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February 10th, 2017

Solution Key
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Question A:

Consider the following DAR-X model given by

xt = φxt−1 + εt, (A.1)

where the error term εt satisfies

εt = σtzt, zt ∼ i.i.d.N(0, 1) (A.2)

σ2t = ω + αx2t−1 + βy2t−1. (A.3)

Here yt is some observed exogenous variable satisfying

yt = ρyt−1 + ηt, ηt ∼ i.i.d.N(0, 1).

The model parameters θ = (φ, ω, α, β, ρ) satisfy φ, ρ ∈ R, ω > 0, and α, β ≥
0. We assume that the processes (zt) and (ηt) are independent.

Question A.1: Suppose that α = β = 0. Under what conditions is xt weakly
mixing?

Solution: If α = β = 0, εt ∼ i.i.d.N(0, ω), and hence xt is an AR(1)
process. It is well-known from the lecture notes that xt is weakly-mixing, if
|φ| < 1. The good answer should mention that this can be shown formally
by verifying that xt satisfies the drift criterion. Ideally, derivations should be
included.

Question A.2: Consider the joint process Wt = (xt, yt). Argue that Wt is
a Markov chain.
It holds that the conditional density of Wt is

f(Wt|Wt−1) = f(xt, yt|xt−1, yt−1)
= f(xt|xt−1, yt−1)f(yt|yt−1).

Derive expressions for the conditional densities f(xt|xt−1, yt−1) and f(yt|yt−1),
and argue that f(xt, yt|xt−1, yt−1) is positive and continuous in (xt, yt) and
(xt−1, yt−1).
Explain briefly what this insight can be used for.

It can be shown (but do not do so) that the Markov chain Wt satisfies the
drift criterion with drift function δ(Wt) = 1+‖Wt‖2 = 1+x2t +y2t if max(ρ2+
β, φ2 + α) < 1.
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Solution: It holds thatWt is a Markov chain, as only (xt−1, yt−1) enters the
dynamics of (xt, yt). Formally, f(Wt|Wt−1,Wt−2, ...) = f(Wt|Wt−1). Since,
xt is conditionally Gaussian with conditional mean φxt−1 and conditional
variance σ2t (conditional on xt−1 and yt−1), it holds that

f(xt|xt−1, yt−1) =
1√

2πσ2t
exp

{
−(xt − φxt−1)2

2σ2t

}
.

Moreover, yt is conditionally Gaussian with conditional mean ρyt−1 and con-
ditional variance 1 (conditional on yt−1). Hence,

f(yt|yt−1) =
1√
2π

exp

{
−(yt − ρyt−1)2

2

}
.

Based on the expressions for f(xt|xt−1, yt−1) and f(yt|yt−1), it holds that
f(xt|xt−1, yt−1) and f(yt|yt−1) are positive and continuous in (xt, yt) and
(xt−1, yt−1). Hence f(Wt|Wt−1) is positive and continuous in Wt and Wt−1.
This property is useful when establishing that Wt satisfies the drift criterion.

Question A.3: Consider the OLS estimator for φ given by

φ̂ =

∑T
t=1 xt−1xt∑T
t=1 x

2
t−1

.

It holds that

φ̂− φ =

∑T
t=1 xt−1εt∑T
t=1 x

2
t−1

.

Assume that Wt = (xt, yt) is weakly mixing and satisfies the drift criterion
such that E[x4t ] <∞ and E[y4t ] <∞.
Show that, as T →∞,

1√
T

T∑
t=1

xt−1εt
D→ N(0, v),

with v = E[ωx2t−1 + αx4t−1 + βy2t−1x
2
t−1].

Explain briefly what this property can be used for.

Solution: The result is established by verifying the conditions of the CLT
for weakly mixing processes (Theorem II.1 from the lecture notes). It holds
that

∑T
t=1 xt−1εt =

∑T
t=1 f(xt, yt, xt−1, yt−1), with

f(xt, yt, xt−1, yt−1) = xt−1(xt − φxt−1)

= xt−1zt

√
ω + αx2t−1 + βy2t−1
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Hence the CLT is satisfied if E[xt−1zt
√
ω + αx2t−1 + βy2t−1|xt−1, yt−1] = 0

and E[|xt−1zt
√
ω + αx2t−1 + βy2t−1|2] < ∞. The first condition holds, since

E[zt] = 0 and zt and (xt−1, yt−1) are independent. For the second condition,
we have that

E[x2t−1z
2
t (ω + αx2t−1 + βy2t−1)] = E[ωx2t−1 + αx4t−1 + βy2t−1x

2
t−1] = v,

where we have used that E[z2t ] = 1. As E[x4t ] < ∞ and E[y4t ] < ∞,
E[y2t−1x

2
t−1] < ∞ by the Hölder (or Cauchy-Schwarz) inequality. We con-

clude that v <∞. By the CLT,

1√
T

T∑
t=1

xt−1εt
D→ N(0, v), as T →∞.

This property is important for obtaining the asymptotic distribution of the
OLS estimator. Specifically, using that (xt, yt) is weakly mixing and satisfies
E[x4t ] <∞,

1

T

T∑
t=1

x2t−1
P→ E[x2t ],

as T →∞, by the LLN. Hence,

√
T (φ̂− φ) =

1√
T

∑T
t=1 xt−1εt

1
T

∑T
t=1 x

2
t−1

D→ N(0, (E[x2t ])
−2v), as T →∞.

The latter derivations are not required.

Question A.4: Instead of estimating only φ based on OLS, we may estimate
all parameters θ = (φ, ω, α, β, ρ) based on maximum likelihood estimation.
For the model (A.1)-(A.3), the one-period VaR at risk level κ, VaRκT,1, is

VaRκ
T,1 = −φxT − σT+1Φ−1(κ), κ ∈ (0, 1),

where Φ−1(·) denotes the inverse cdf of the standard normal distribution.
Explain briefly how you would compute an estimate of VaRκ

T,1.

Solution: Given an estimate of θ = (φ, ω, α, β, ρ), denoted θ̂ = (φ̂, ω̂, α̂, β̂, ρ̂),
obtained by maximum likelihood (or some other method), an estimate of σT+1
is given by

σ̂T+1 =

√
ω̂ + α̂x2T + β̂y2T ,

where xT and yT are contained in the data set. For given κ ∈ (0, 1), Φ−1(κ)
is known, since Φ−1(·) denotes the inverse cdf of the standard normal distri-
bution. An estimate of VaRκ

T,1 is thus computed as −φ̂xT − σ̂T+1Φ−1(κ).
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Question B:

Suppose that the logarithm of the price of a share of stock is given by

p(t) = p(0) + µt+ σW (t), t ∈ [0, T ], (B.1)

where p(0) ∈ R is some fixed initial value, µ ∈ R and σ > 0 are constants,
and W (t) is a Brownian motion.

Recall here that the Brownian motion W (t) has the properties

1. W (0) = 0.

2. W has independent increments, i.e. if 0 ≤ r < s ≤ t < u, then

W (u)−W (t) and W (s)−W (r)

are independent.

3. The increments are normally distributed, i.e.

W (t)−W (s) ∼ N(0, t− s)

for all 0 ≤ s ≤ t.

Suppose that we have observed the price p(t) at n+ 1 equidistant points

0 = t0 < t1 < . . . < tn = T,

with
ti =

i

n
T, i = 0, ..., n.

Based on these points we obtain n log-returns given by

r(ti) = p(ti)− p(ti−1), i = 1, ..., n.

Question B.1: Argue that r(ti) is normally distributed, i.e. show that

r(ti) ∼ N

(
µ
T

n
, σ2

T

n

)
.

Show that
cov(r(ti), r(ti−1)) = 0.
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Solution: The properties follow directly from the definition of r(ti) and
the properties of the Brownian motion. Derivations should be included.

Question B.2: We now seek to estimate the model parameters (µ, σ2) based
on maximum likelihood. Given the n log-returns, the log-likelihood function
is (up to a constant and a scaling factor)

Ln(µ, σ2) =

n∑
i=1

{
− log(σ2

T

n
)−

[
r(ti)− µTn

]2
σ2 T

n

}
.

Let µ̂ denote the maximum likelihood estimator of µ.
Show that

µ̂ =
1

T

n∑
i=1

r(ti) =
1

T
[p(T )− p(0)] .

Argue that the sampling frequency of the log-returns over the interval [0, T ]
does not have any influence on the estimate of µ.
Solution: By solving the F.O.C. for maximization of Ln(µ, σ2), that is

solving
∂Ln(µ, σ2)

∂µ
= 0

for µ, yields the MLE

µ̂ =
1

T

n∑
i=1

r(ti).

Derivations should be included. Moreover,

n∑
i=1

r(ti) =
n∑
i=1

p(ti)− p(ti−1) = p(tn)− p(t0) = p(T )− p(0),

by the definition of ti. Hence, the MLE does not depend on n, i.e. the
number of observations within the interval [0, T ].

Question B.3: Let µ̂ denote the maximum likelihood estimator derived in
Question B.2.
Show that µ̂ is an unbiased estimator for µ, i.e. show that

E[µ̂] = µ.

Moreover, show that the variance of the estimator is

Var(µ̂) =
σ2

T
.
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It can be shown (but do not do so) that these two properties ensure that
µ̂

p→ µ as T →∞.

Solution: We have, using the dynamics for p(t), that

µ̂ =
1

T
[p(T )− p(0)]

=
1

T
[µT + σW (T )]

= µ+
1

T
σW (T ).

The expressions for E[µ̂] and Var(µ̂) then follow directly by the properties
of the Brownian motion. Derivations should be included.

Question B.4: Assume now that T = 1, such that we have n observations
of the log-returns over the time interval [0, 1], which you may think of as the
time interval over one trading day. Then the maximum likelihood estimator
for σ2 is given by

σ̂2 =
n∑
i=1

[
r(ti)−

1

n

n∑
i=1

r(ti)

]2
.

Use that r(ti) = µ
n

+ σ√
n
zi, with zi ∼ i.i.d.N(0, 1) in order to show that

1

n

n∑
i=1

r(ti)
p→ 0 as n→∞.

Explain briefly how σ̂2 is related to the Realized Volatility.

Solution: We have, that

1

n

n∑
i=1

r(ti) =
1

n

n∑
i=1

(
µ

n
+

σ√
n
zi

)
=
µ

n
+

σ√
n

1

n

n∑
i=1

zi.

For the first term, µ
n
→ 0 as n → ∞. For the second term, 1

n

∑n
i=1 zi

p→
E(zi) = 0 by the LLN for i.i.d. processes. We conclude that 1

n

∑n
i=1 r(ti)

p→
0 as n→∞.
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The realized volatility (over the interval [0, 1]) is
n∑
i=1

[r(ti)]
2 .

Hence the realized volatility is obtained from σ̂2 =
∑n

i=1

[
r(ti)− 1

n

∑n
i=1 r(ti)

]2
by substiuting in the probability limit of 1

n

∑n
i=1 r(ti) (that is equal to zero).

Question B.5: The following figure shows the daily log-returns of the S&P
500 index for the period January 4, 2010 to September 17, 2015.

SP500  LogReturn
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Discuss briefly whether the model in (B.1) is a reasonable model for the daily
log returns of the S&P 500 index.

Solution: The model in (B.1) suggests that daily log-returns r(t) = p(t)−
p(t− 1), t = 1, 2, ..., should be given by

µ+ σ(W (t)−W (t− 1)).

By the properties of the Brownian motion, we would have that r(t) ∼
i.i.d.N(µ, σ2). I.e. the returns would be independent and Gaussian with
constant mean and variance. By visual inspection of the series, it appears
that the returns are heteroskedastic, and we know from the lectures that the
returns are unconditionally heavy-tailed (i.e. non-Gaussian). This suggests
that the model is not appropriate for modelling the main features of the daily
return series. Ideally, a few derivations should be included.
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